Experimental design and the relative sensitivity of BOLD and perfusion fMRI.

نویسندگان

  • G K Aguirre
  • J A Detre
  • E Zarahn
  • D C Alsop
چکیده

This paper compares the statistical power of BOLD and arterial spin labeling perfusion fMRI for a variety of experimental designs within and across subjects. Based on theory and simulations, we predict that perfusion data are composed of independent observations in time under the null hypothesis, in contrast to BOLD data, which possess marked autocorrelation. We also present a method (sinc subtraction) of generating perfusion data from its raw source signal that minimizes the presence of oxygen-sensitive signal changes and can be used with any experimental design. Empirically, we demonstrate the absence of autocorrelation in perfusion noise, examine the shape of the hemodynamic response function for BOLD and perfusion, and obtain a measure of signal to noise for each method. This information is then used to generate a model of relative sensitivity of the BOLD and perfusion methods for within-subject experimental designs of varying temporal frequency. It is determined that perfusion fMRI provides superior sensitivity for within-subject experimental designs that concentrate their power at or below approximately 0.009 Hz (corresponding to a "blocked" experimental design of 60-s epochs). Additionally, evidence is presented that across-subject hypothesis tests may be more sensitive when conducted using perfusion imaging, despite the better within-subject signal to noise obtained in some cases with BOLD.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Arterial spin labeling perfusion fMRI with very low task frequency.

Functional magnetic resonance imaging (fMRI) has become the most widely used modality for visualizing regional brain activation in response to sensorimotor or cognitive tasks. While the majority of fMRI studies have used blood oxygenation level-dependent (BOLD) contrast as a marker for neural activation, baseline drift effects result in poor sensitivity for detecting slow variations in neural a...

متن کامل

SNR and functional sensitivity of BOLD and perfusion-based fMRI using arterial spin labeling with spiral SENSE at 3 T.

Blood oxygenation level-dependent (BOLD) functional magnetic resonance imaging (fMRI) studies using parallel imaging to reduce the readout window have reported a loss in temporal signal-to-noise ratio (SNR) that is less than would be expected given a purely thermal noise model. In this study, the impact of parallel imaging on the noise components and functional sensitivity of both BOLD and perf...

متن کامل

Multiband multi-echo simultaneous ASL/BOLD for task-induced functional MRI

Typical simultaneous blood oxygenation-level dependent (BOLD) and arterial spin labeling (ASL) sequences acquire two echoes, one perfusion-sensitive and one BOLD-sensitive. However, for ASL, spatial resolution and brain coverage are limited due to the T1 decay of the labeled blood. This study applies a sequence combining a multiband acquisition with four echoes for simultaneous BOLD and pseudo-...

متن کامل

Localization of the hand motor area using BOLD and ASL fMRI

Introduction: Functional magnetic resonance imaging (fMRI) techniques can be useful in the pre-surgical mapping of eloquent brain tissue. Previous studies have shown that perfusion-based Arterial Spin Labeling (ASL) methods produce results with better spatial specificity than the most commonly used Blood Oxygen Level Dependent (BOLD) contrast [1]. These studies have focused on the relative loca...

متن کامل

Effect of Phase-Encoding Reduction on Geometric Distortion and BOLD Signal Changes in fMRI

Introduction Echo-planar imaging (EPI) is a group of fast data acquisition methods commonly used in fMRI studies. It acquires multiple image lines in k-space after a single excitation, which leads to a very short scan time. A well-known problem with EPI is that it is more sensitive to distortions due to the used encoding scheme. Source of distortion is inhomogeneity in the static B0 field that ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • NeuroImage

دوره 15 3  شماره 

صفحات  -

تاریخ انتشار 2002